Relevance of amyloid precursor-like protein 2 C-terminal fragments in pancreatic cancer cells
نویسندگان
چکیده
In some cellular systems, particularly neurons, amyloid precursor-like protein 2 (APLP2), and its highly homologous family member amyloid precursor protein (APP), have been linked to cellular growth. APLP2 and APP undergo regulated intramembrane proteolysis to produce C-terminal fragments. In this study, we found comprehensive expression of APLP2 C-terminal fragments in a panel of pancreatic cancer cell lines; however, APP C-terminal fragments were notably limited to the BxPC3 cell line. Extensive glycosaminoglycan modification on APLP2 was also found in the majority of pancreatic cancer cell lines. Glycosaminoglycan-modified and -unmodified APLP2, and particularly APLP2 C-terminal fragments, also demonstrated increased expression in oncogene-transformed pancreatic ductal cells. Additionally, elevated APLP2 levels were confirmed in human pancreatic cancer tissue. Downregulation of APLP2 and APP expression, alone or in combination, caused a decrease in the growth of a pancreatic cancer cell line with representatively low APP C-terminal fragment expression, the S2-013 cell line. Furthermore, we found that treatment with β-secretase inhibitors to block formation of APLP2 C-terminal fragments decreased the growth and viability of S2-013 cells, without affecting the survival of a non-transformed pancreatic ductal cell line. In conclusion, our studies demonstrate that abundant APLP2, but not APP, C-terminal fragment expression is conserved in pancreatic cancer cell lines; however, APP and APLP2 equally regulated the growth of S2-013 pancreatic cancer cells. Chiefly, our discoveries establish a role for APLP2 in the growth of pancreatic cancer cells and show that inhibitors preventing APLP2 cleavage reduce the viability of pancreatic cancer cells.
منابع مشابه
Minocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation
Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...
متن کاملMinocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation
Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...
متن کاملIncreased expression and processing of the Alzheimer amyloid precursor protein in pancreatic cancer may influence cellular proliferation.
Abnormal cleavage of amyloid precursor protein (APP) in the central nervous system has been linked to the development of Alzheimer's disease. Recent work has identified additional roles for APP in peripheral tissue, such as cellular proliferation and motility. APP undergoes proteolytic processing to release a soluble NH(2)-terminal ectodomain fragment (sAPP), an Abeta or p3 peptide, and cytosol...
متن کاملAmyloid precursor-like protein 2 (APLP2) affects the actin cytoskeleton and increases pancreatic cancer growth and metastasis
Amyloid precursor-like protein 2 (APLP2) is aberrantly expressed in pancreatic cancer. Here we showed that APLP2 is increased in pancreatic cancer metastases, particularly in metastatic lesions found in the diaphragm and intestine. Examination of matched human primary tumor-liver metastasis pairs showed that 38.1% of the patients had positive APLP2 expression in both the primary tumor and the c...
متن کاملNeuregulin-1 exerts protective effects against neurotoxicities induced by C-terminal fragments of APP via ErbB4 receptor.
Neuregulin-1 (NRG1) plays important roles in the development and plasticity of the brain, and it is also reported to have potent neuroprotective properties. We previously reported that NRG1 has neuroprotective actions against Swedish amyloid precursor protein-induced neurotoxicity. In addition to the amyloid beta peptide, other metabolites of amyloid precursor protein (APP) such as the C-termin...
متن کامل